SHELL-MODEL STUDIES OF ^{22}Mg and ^{30}S AT EXCITATIONS OF INTEREST FOR THE THERMONUCLEAR RADIATIVE CAPTURE REACTIONS

M. Bouhelal1, F. Haas2, E. Caurier2, F. Nowacki2

1 Laboratoire de Physique Appliquée et Théorique, Université de Tébessa, Tébessa, Algérie
2 IPHC, CNRS/IN2P3, Université de Strasbourg, F-67037 Strasbourg Cedex 2, France

In explosive stellar environments, such as classical novae and x-ray bursters, thermonuclear radiative capture reactions on unstable nuclei determine the path of nucleosynthesis towards the proton drip line. These processes are often dominated by resonant capture to excited states above the particle-emission threshold and therefore depend critically on the nuclear structure properties of the levels involved.

We are interested in the two rp reactions $^{21}\text{Na}(p,\gamma)\,^{22}\text{Mg}$ and $^{29}\text{P}(p,\gamma)\,^{30}\text{S}$, for which the reaction rates will depend on spin-parity assignments of the daughter states around the proton-emission thresholds.

Shell model results using our $(0+1)\,\hbar\omega$ PSDPF interaction [1] for the mirrors ^{22}Mg and ^{22}Ne will be presented and discussed. A complete spectrum of positive and negative parity states will be proposed for ^{22}Mg. In particular what the negative parity states are concerned, three states are identified in ^{22}Ne: 2- at 5.146 MeV, 3- at 5.910 MeV and 0- at ~ 6.234 MeV, they correspond to the mirror states in ^{22}Mg: 2- at 5.006 MeV, 3- at 5.838 MeV and 0- at 6.046 MeV.

In the same way as it was done in Ref. [2] for the positive levels, we calculated the complete spectra of the mirrors ^{30}S and ^{30}Si. Here, we confirm the proposed $1\hbar\omega$ states at 6.225, 6.242 and 6.435 MeV as 4-, 1- and 2-, respectively.