MEASUREMENT OF THE STRENGTHS OF THE RESONANCES AT 417, 611, AND 632 keV IN THE $^{22}\text{Ne}(p,\gamma)^{23}\text{Na}$ REACTION

Federico Ferraro1,2, Francesca Cavanna1,2, Rosanna Depalo3,4, Alessandra Slemer3,4, Tariq Al-Abdullah5,7, Michael Anders5,6, Daniel Bemmerer5, Zoltán Elekes5, Stefan Reinicke5,6, Louis Wagner5,6.

1 Università degli Studi di Genova, Dipartimento di Fisica, Genova, Italy
2 INFN, Sezione di Genova, Genova, Italy
3 Università degli Studi di Padova, Dipartimento di Fisica, Padova, Italy
4 INFN, Sezione di Padova, Padova, Italy
5 Helmholtz-Zentrum-Dresden-Rossendorf, Dresden, Germany
6 Technische Universität Dresden, Dresden, Germany
7 Hashemite University, Zarqa, Jordan

The $^{22}\text{Ne}(p,\gamma)^{23}\text{Na}$ reaction is part of the NeNa cycle of hydrogen burning. This cycle plays a key role in the nucleosynthesis of the elements between ^{20}Ne and ^{27}Al in red giant stars, asymptotic giant stars and classical nova explosions [1,2]. The strengths of the resonances at proton energies above 400 keV are still affected by high uncertainty [3,4]. In order to reduce this uncertainty, a precision study of the most intense resonances between 400 keV and 700 keV has been performed at the HZDR 3 MV Tandetron. The target, made of ^{22}Ne implanted in a 0.22 mm thick Ta backing, has been characterized using the 1278 keV and 458 keV resonances, well known in literature [4,5]. Subsequently, the strengths of the resonances at 417, 611, and 632 keV were determined. Two HPGe detectors equipped with active anti-Compton shielding have been used. The new resonance strengths are more precise than previous work.

– Supported by the European Union (SPIRIT EC contract no. 227012).