26Al/30P(d,n) REACTIONS FOR KEY ASTROPHYSICAL RESONANCES IN EXPLOSIVE HYDROGEN BURNING

1 University of Edinburgh, Edinburgh, EH9 3JZ, United Kingdom
2 National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
3 Central Michigan University, Mount Pleasent, Michigan 48859, USA
4 Argonne National Laboratory, Argonne, Illinois 60439, USA

26Al(d,n)27Si and 30P(d,n)31S transfer reactions have been studied in inverse kinematics at the National Superconducting Cyclotron Laboratory to obtain information on the strength of key astrophysical resonances in 27Si and 31S. These are relevant for abundance calculations of the cosmic gamma-ray emitter 26Al, and for the abundances of heavy elements (e.g. silicon), highly dependent on the 30P(p,γ)31S reaction, observed in novae ejecta. A primary beam of 36Ar (150 MeV/A) impinging on a Be target produced around 30-MeV/u beams of 26Al and 30P, which were separated by the A1900 fragment separator [1]. The radioactive 26Al and 30P beams bombarded a 10 mg/cm2-thick CD$_2$ target surrounded by the Gamma-Ray Energy-Tracking In-beam Nuclear Array GRETINA [2]. The 27Si and 31S ions were analyzed by the S800 spectrograph [3] and identified by energy-loss and time-of-flight measurements. The γ-rays from the decays of excited states in 27Si and 31S were detected in coincidence with the recoiling 27Si and 31S ions using GRETINA. By measuring the number of coincident events, and correcting for the angular distributions of the gamma rays, this provides an angle integrated measurement of the (d,n) cross-sections, and a measure of the proton partial widths for the key astrophysical resonances in 27Si and 31S.