Charged particle induced reaction cross Sections on p-isotopes of erbium for the astrophysical γ-process

Nalan Özkan\(^1\), R. Taygun Güray\(^1\), Caner Yalçın\(^1\), Wanpeng Tan\(^2\), Ani Aprahamian\(^2\), Mary Beard\(^2\), Richard J. deBoer\(^2\), Joachim Görres\(^2\), Qian Li\(^2\), Ed Stach\(^2\), Michael Wiescher\(^2\), Anne Sauerwein\(^3\), Kerstin Sonnabend\(^3\), Zsolt Fülöp\(^4\), György Gyürky\(^4\), Endre Somorjai\(^4\), John Greene\(^5\)

\(^1\) Kocaeli University, Department of Physics, Umuttepe 41380, Turkey
\(^2\) University of Notre Dame, Department of Physics, Notre Dame, Indiana 46556, USA
\(^3\) Institut für Angewandte Physik, Goethe-Universität Frankfurt, D-60438 Frankfurt a.M., Germany
\(^4\) MTA Atomki, P.O. Box 51, H-4001 Debrecen, Hungary
\(^5\) Argonne National Laboratory, Illinois 60439, USA

The γ-process, i.e., a sequence of photodisintegration reactions, \((\gamma,n)\), \((\gamma,p)\), and \((\gamma,\alpha)\) on heavy nuclei at temperatures of 2-3×10\(^9\) K is the favored mechanism responsible for the production of p-nuclei with masses larger than 100. Most of the involved reaction rates are experimentally unknown and typically calculated with the statistical Hauser-Feshbach (HF) model. Although the γ-process has been mostly successful in explaining the production of a large range of p-nuclei, two mass regions remain problematic, \(A<124\) and \(150\leq A\leq 165\), where a number of p-nuclei are under-produced. Whether the origin of the problem arises from deficiencies in the astrophysical models or the statistical model and nuclear input parameters has not as yet been clearly identified.

In order to test the reliability of the HF calculations and to provide a systematic understanding of the γ-process at energies of astrophysical interest, charged particle induced reaction cross sections of erbium isotopes with \(A=162\) and 164, which are p-nuclei, have been measured using FN Tandem Accelerator at the University of Notre Dame. The reaction yields have been determined by the observed activity of produced radioactive isotopes, which was detected offline by a HPGe detector. The obtained cross sections and astrophysical S factors are presented and compared with calculations from two statistical model codes: NON-SMOKER and TALYS.