MEASUREMENT OF THE 197Au(n,g) STELLAR CROSS SECTION AT kT=30 keV BY ACTIVATION

Pablo Jimenez-Bonilla1, Javier Praena1,2

1 Atomic, Molecular and Nuclear Physics Department, University of Seville, Spain.
2 Centro Nacional de Aceleradores (US-JA-CSIC), Seville, Spain.

Neutron capture processes (s-process and r-process) are responsible for the nucleosynthesis of the main part of the heavy elements above iron. The Stellar Cross Section or Maxwellian Averaged Cross Section (MACS) of the involved isotopes is a key parameter for modeling the stellar nucleosynthesis processes. The MACS can be calculated analytically from the neutron-capture cross-section measured as a function of the energy. Moreover, as shown by Beer & Käppeler [1], MACS at kT≈25 keV can be measured almost directly using activation technique (whenever possible), since a quasi-maxwellian neutron spectrum (MNS) can be generated by means of 7Li(p,n) near the reaction threshold.

Most neutron cross sections are measured relative to standards. For activation measurements, the MACS of 197Au(n,γ) at kT=30 keV is used as reference [2]. The value traditionally adopted for the MACS of Au(n,γ) was obtained by Ratynski & Käppeler, in a very accurate activation measurement using a spherical segment gold sample [3]. They reported a value equal to 582±9 mb. Recently, new measurements of the 197Au(n,γ) with TOF technique at n-TOF facility at CERN [4] reported similar values (611±22 mb).

In this work, we have measured the MACS of 197Au(n,γ) at kT=30 keV by activation at 3 MV Tandem Pelletron accelerator at CNA (Seville). A gold flat sample was used. We report a value equal to 619±30 mb. We will discuss the analysis and results; in particular we will examine the planar correction proposed in this work.