A NOVEL APPROACH FOR ODD-ODD NUCLEI APPLIED TO PROTON EMITTERS

Monika Patial¹², P. Arumugam², E. Maglione³, and L.S. Ferreira⁴

1 Department of Physics, Royal Institute of Technology (KTH), SE-10691 Stockholm, Sweden
2 Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, India
3 Dipartimento di Fisica e Astronomia “G. Galilei”, Via Marzolo 8, I-35131 Padova, Italy and Istituto Nazionale di Fisica Nucleare, Padova, Italy
4 Centro de Física das Interacções Fundamentais, and Departamento de Física, Instituto Superior Técnico, Avenida Rovisco Pais, P1049-001 Lisbon, Portugal

The particle rotor model is widely used and quite successful for a long time, in explaining the observed rotational spectra of several nuclei [1, 2]. Microscopic theories for proton emission utilizing this approach is regarded as one among the most robust and successful approaches [3, 4]. So far, the rotation particle coupling has been carried out only in a constant or variable moment of inertia approximation for odd-odd nuclei. We put forth a new formalism, named as the coupling matrix approach. The core idea of this formalism is based on the coupled channels approach for odd-even nuclei suggested in the work of Bohr and Mottelson and of Esbensen and Davids[5]. As an application the phenomenon of rotational alignment in odd-odd nuclei will be discussed. The results for the proton emission from ¹⁷⁰Au will be discussed, highlighting the importance of the coupling matrix approach when the energy levels of the core deviate from that of a rigid rotor.