Nucleosynthesis Ejecta in the Galaxy

Roland Diehl¹, Martin Krause¹, Karsten Kretschmer², et al.

¹ Max Planck Institut für extraterrestrische Physik, Garching, Germany
² François Arago Centre, APC, Université Paris Diderot, Paris, France

Massive star winds and supernova explosions arise from coeval groups of stars, and lead to super-bubbles up to kpc in size. Feedback and ejecta transfer kinetic energy and new nuclei in a complex way to the structured interstellar gas. Their kinematics is directly reflected in radioactive trace elements such as 26Al. The Doppler-shifts seen in the 26Al line show that the line-of-sight averaged velocities of gas traced by 26Al are substantially larger than expected from Galactic rotation. An averaged bulk velocity of ~200 km s$^{-1}$ above the Galactic-rotation velocity is surprising. We suggest that superbubbles preferentially expand in a non-symmetric way around their sources and towards the leading edges of spiral arms, thus producing a net asymmetry of the expansions of 26Al enriched ejecta.