GCE AND SOLAR S-PROCESS ABUNDANCES: DEPENDENCE ON THE 13C-POCKET STRUCTURE

Sara Bisterzo1,2, Claudia Travaglio1, Roberto Gallino2, Michael Wiescher3, Franz Käppeler4

1 INAF - Astrophysical Observatory Turin, Turin, Italy
2 Department of Physics, University of Turin, Turin, Italy
3 Joint Institute for Nuclear Astrophysics (JINA), Department of Physics, University of Notre Dame, IN, USA
4 Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

We study the s-process abundances ($A>90$) at the epoch of the formation of the solar-system as the outcome of nucleosynthesis occurring in AGB stars of various initial masses and metallicities. AGB yields are computed with an updated neutron capture network and updated initial solar abundances. We use a Galactic Chemical Evolution (GCE) code based on [1], slightly modified accounting for the new determination of the age of the Universe (13.8 Gyr [3]) and solar abundances by [4].

At present, one of the most problematic issues of AGB stellar models is the formation of the 13C-pocket, where the major neutron source of the s-process (the 13C(α, n)16O reaction) burns radiatively. Indeed, the internal structure of the 13C-pocket may depend on the stellar characteristic (e.g., AGB initial mass and metallicity), and on the interplay between physical mechanisms that may compete in the star itself (e.g., rotation, magnetic fields, gravity waves [5,6,7,8,9]).

Because of the present uncertainties, we adopt in our AGB models a free parametrization of the 13C-pocket as has been done by [1]: this approximation allow us to investigate the impact of different internal structures of the 13C-pocket on the GCE s-distribution [10]. We discuss our results in the light of the most recent studies. We follow the chemical evolution of several elements (e.g., α, Zr, Ba, Eu) along the stellar age and metallicity, comparing our results with the most update spectroscopic observations (e.g., [11,12]).